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TECHNICAL NOTE D-155

MINIMAL MANEUVERS OF HIGH-PERFORMANCE
ATRCRAFT IN A VERTICAL PLANE

By Angelo Miele
SUMMARY

A general theory is presented for analyzing minimal maneuvers of
high-performance aircraft in a vertical plane where the earth is assumed
flat and the gravitational field uniform.

The indirect methods of the calculus of variations are used and the
variational problem formulated as a problem of Bolza type. The latter
consists of extremizing the sum of a line integral and of a functional
expression which depends upon the end values of the generalized coordi-
nates of the aircraft. Problems of either the Lagrange type or the Mayer
type are studied as particular cases,

For the general problem of simultaneously optimizing the angle-of-
attack program and the thrust program, solutions in a closed form are
not possible. Thus, the integration of the set of Euler equations and
constraining equations is to be performed by approximate methods. In
view of the fact that the variational problems of engineering interest
are of the boundary-value type (i.e., problems with conditions prescribed
in part at the initial point and in part at the final point), the use of
trial and error procedures is in order.

Under particular assumptions, however, expressions in a closed form
can be derived for the optimizing condition. As an example, the brachis-
tocronic climbing technique of a rocket-powered aircraft is readily com-
puted if one neglects the induced drag with respect to the zero-lift
drag. As another example, the climbing technique of minimum time or of
minimum fuel consumption for a turbojet aircraft is also readily computed
by neglecting centripetal accelerations. For these problems the rela-
tionship between altitude and Mach number is explicitly calculated, thus
bypassing the tedious energy-height method.

To complete the paper, and to establish a link between calculus of
variations and ordinary theory of maxima and minima, some quasi-steady
problems (i.e., problems in which the acceleration terms are neglected)
of Mayer type are considered. In particular, the maximum range and the
maximum endurance of a turbojet aircraft are investigated for constant



flight altitude or for constant engine control parameter. Simple equa-
tions are derived for the ratio of induced drag to zero-lift drag and
for the optimizing condition. These relations constitute an important
extension of the well-known results of the low-speed flight theory to
the case where an arbitrary interdependence between zero-lift drag coef-
ficient, induced drag factor, thrust, specific fuel consumption, and
Mach number is considered.

INTRODUCTION

Several new problems of applied mathematics have arisen in the anal-
ysis of trajectories of high-speed aircraft which cannot be handled by
using conventional methods of performance analysis. Typical among these
problems is the determination of the optimum climbing technique between
one altitude and another.

In the years preceding the second World War, it was customary to
investigate the flight performances of conventional aircraft by assuming
that the motion of the center of gravity is locally straight and uniform.
With the above hypothesis substantial simplifications were made possible,
leading to simple analytical relationships of great usefulness for design
purposes.,

For the case of a jet-propelled aircraftl it becomes important to
account for the inertia terms because of the rapid variation of the
vector velocity with the time. Thus, the analysis of the optimum flight
performances shifts from the domain of the ordinary theory of maxima and
minima into the realm of the calculus of variations.

Simplified Climbing Problem for Turbojet Aircraft

The problem of the optimum climbing program for turbojet aircraft
attracted considerable interest in the years immediately following the
second World War. The initial investigations were based on the assumption

lsome of the essential differences between conventional aircraft and
jet-propelled aircraft can be illustrated by means of the following com-
parison which refers to climbing flight: for a piston-engine aircraft
which must be transferred from sea level and take-off speed to M = 0.5
and h = 20,000 feet the variation in kinetic energy per unit mass is
about one-fifth the variation in potential energy; on the other hand,
for a jet-propelled vehicle which must be transferred from sea level and
take-off speed to M = 2.5 and h = 50,000 feet the variation in kinetic
energy is about twice the variation in potential energy.
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that the mass of the aircraft is ideally a constant and the centripetal
component of the acceleration is disregarded, with only the tangential
component being accounted for.

Thus, approximate solutions were detected (refs. 1 and 2) by Miele,
whose analytical method (based on Green's theorem) avoided the use of
indirect variational procedures. The calculus of variations was also
avoided in a paper by Lush (ref. %), with an intuitive graphical method
based on the concept of energy height.

Concerning the same problem, an attack with the indirect methods
of the calculus of variations was attempted in references 4 to 6, The
results obtained, however, are incomplete. 1In fact, while the true solu-
tion is discontinuous and generally formed of three different branches
(dive; zoom; variable path inclination subarc), the authors of these
references detected only one of the three subarcs forming the extremal
arc, namely the subarc flown with variable path inclination. Complete
variational solutions, on the other hand, were detected by Cicala and
Miele (ref. 7) and by Lush (ref. 8). In recent times, the results which
Miele indicated in reference 1 were rederived by Cartaino and Dreyfus
(ref. 9) along the lines of the promising theory of dynamic programming,
as developed by Bellman (ref. 10).

Simplified Climbing Problem for Rocket-Powered Aircraft

For a rocket-powered aircraft the timewise variation of mass is
important and must be accounted for in the study of the climbing perform-
ances, Historically, it is of interest to notice that the theoretical
development of new climbing techniques for rocket-powered aircraft pre-
ceded that for turbojet-powered aircraft.

Of particular interest are two papers by Kaiser (ref. 11) and
Lippisch (ref. 12). Both works were carried out in connection with the
pioneering development of jet-propelled aircraft in Germany during World
War II., Even though they left the bulk of variaticnal questions asso-
ciated with the climbing flight substantially unsolved, they threw con-
siderable light on a new class of problems of the mechanics of flight.

In particular, it seems that in the work by Kaiser (ref. 11) the

2
concept of energy height he =h + %-) was first employed for flight

g
mechanics applications. Lippisch (ref. 12), on the other hand, inves-
tigated the accelerated climbing flight under the simplifying assumption
that the total drag coefficient Cp 1s constant along the flight path.



In recent years the fixed end-points problem was reinvestigated by
Miele (ref. 13), under the assumption that the induced drag is negligible
with respect to the zero-lift drag. Miele's treatment was based on
Green's theorem, in order to avoid some of the analytical difficulties
(solved in later works) associated with the use of the indirect methods
of the calculus of variations.

Investigations of a More General Nature

The investigations of the sections on climbing flight of minimum
time or minimum fuel consumption were carried out under particular hypoth-
eses, whose essential analytical objective was to simplify the equation
of motion on the normal to the flight path. By lifting the above limi-~
tations, a more general category of variational problems is originated.
These problems (which can be indifferently formulated within the frame
of the questions of either the Lagrange, Mayer, or Bolza type) attracted
the attention of Cicala and Miele (ref. 14), who made use of the Mayer
formulation in an initial note dealing with minimum time flight paths.
More general problems of Mayer type were investigated by Cicala in ref-
erence 15 and Miele in reference 16.

Problems of the Lagrange type were treated in reference 17, which
dealt with brachistocronic paths and in reference 18, which dealt with
maximum range trajectories. Both papers, however, must be considered
as incorrect. As a matter of fact, the minimal conditions were stated
without considering that the equations of motion must be satisfied at
all points of the flight trajectory and that, as a consequence, they
must appear as nonholonomic constraints in the very formulation of all
variational problems of the mechanics of flight.

The Lagrange formulation was also used in reference 19, which dealt
with both trajectories of minimum time and of minimum fuel consumption.
A parabolic drag polar with coefficients depending upon the Mach number
was assumed. After eliminating the 1ift from the equations of motion,
the nonholonomic constraint to be satisfied at all points of the flight
path was formulated in the form

£(h,v,v,0,6,m) -1 =0

This formulation, however, is not as general as the one of reference 1k,
which is valid for all drag polars.

A recent paper by Fraeijs de Veubeke (ref. 20) refers particularly
to the problem of maximum range. After formulating the equations of motion
in parametric form, the paper considers several possible simplifications
in the analytical nature of the drag function.
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Object of Present Investigation

With the present investigation the work initially developed in
references 14, 15, and 21 is extended. General equations are presented
describing the optimum paths in a vertical plane. These equations are
considerably simpler than those of reference 19 and, therefore, more
suitable for digital machine computations. The Mayer formulation, used
in reference 16, is abandoned here in favor of the perhaps more general
formulation due to Bolza. The reason is that the Bolza formulation
appears to be more flexible than the Mayer one in connection with the
simplified analysis of certain special types of flight paths of aircraft
propelled by air-breathing engines. Problems of either the Lagrange
type or the Mayer type are studied as particular cases.

A nerlty of this paper is that the customary form of the equations
of motion is modified by the introduction of a special set of constant
coefficients Ki (i =1 . .. 8) whose value can either be zero or one,
depending upon the particular simplifying hypotheses considered in solving
a certain variational problem. In so doing a single set of Euler equa-
tions is written, valid for both the case where the exact equations of
motion are used and for the case where particular approximations are
employed.

Thus, the preliminary analyses carried out by Miele and Cappellari
in references 22 and 2% are particular cases of the present theory

obtained by merely attributing to the coefficients Kj (1 =1...8)

the set of values which corresponds to the form of the equations of
motion,

Furthermore, a bridge is established between calculus of variations
and ordinary theory of maxima and minima. It is shown that, when the
acceleration terms are neglected, both approaches lead to the same results
(refs. 24 and 25). 1In this connection, the cruising flight of maximum
range or of maximum endurance is investigated for constant altitude or
for constant value of the control parameter of a turbojet engine. Simple
relations are obtained for the optimizing condition. Thus, the well-
known results of the low-speed flight thecory are extended to cover the
case where an arbitrary dependence between zero-1ift drag coefficient,
induced drag coefficient, thrust, specific fuel consumption, and Mach
number is considered.

This investigation was conducted at Purdue University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.
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speed of sound, ft sec™t =
function defined by equation (91)
function defined by equation (92)

function defined by equation (93)

W
1
function defined by equation (105) 1
8
function defined by equation (106)
function defined by equation (107)
specific fuel consumption per unit time and unit thrust,
sec™1
integration constant
drag coefficient
AN

1ift coefficient

drag, 1b
fundamental function defined by equation (1k4)
acceleration of gravity, ft sec=e

functional form whose difference AG is to be minimized
in a Mayer problem

flight altitude above sea level, ft

function whose time integral is to be minimized in a
Lagrange problem

functional form to be minimized in a Bolza problem

first members of the equations representing constraints
of the variational problem

ratio of induced drag coefficient to square of 1ift
coefficient -
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dimensionless constants

1lift, 1b

instantaneous mass of aircraft, 1b £t71 sec?
Mach number, V/a

atmospheric pressure, 1b £te

ratio of induced drag to zero-lift drag, KCLE/CDo

reference surface, £t2
time, sec

thrust, 1b

flight velocity, ft sec™l

equivalent exit velocity of rocket engine, ft sec'l

exponent appearing in expression for zero-lift drag
coefficient

horizontal distance, ft

coefficient appearing in expression for zero-lift drag
coefficient

generic dependent variables
control parameter of jet engine
-1

engine mass flow, 1b ft " sec

ratio of specific heat at constant pressure to specific
heat at constant volume

variation consistent with prescribed end conditions
. . . 1/2
real variable defined by equation (ll), 1b

path inclination with respect to horizontal plane

dimensionless parameter proportional to wing loading of
aircraft



%l .« . e %8 lagrange multipliers

3 real variable defined by equation (10), lbl/2

1 ratio of static pressure at altitude h +to static pressure
at the tropopause, p/p*

T dimensionless parameter proportional to thrust loading of
rocket-powered aircraft

o first member of the additional constraining equation

¥ function defined by equation (99)

Superscript:

(") derivative with respect to time
Subscripts:

i initial point

f final point

- condition immediately before a corner point
+ condition immediately after a corner point

* condition at altitude of tropopause
FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION

The trajectories considered in the present report are entirely con-
tained in a vertical plane, that is, in a plane perpendicular to the sur-
face of the earth, assumed flat. The vector acceleration of gravity is
regarded a constant everywhere.

The airplane is conceived as a particle on which aerodynamic forces
of symmetric type are acting. The latter are calculated as in unacceler-
ated flight, that is, by neglecting the so-called aerodynamic lag. Thus,

the relationship between 1lift L and drag D 1is assumed to have the
general form

D = D(h,V,L) (1)
The power plant considered here is of a nonspecified type. The

only assumption made is that thrust T and mass flow of either fuel or
propellant 8 are specified, though arbitrary, functions of the form

M- ==
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T = T(h,V,a) (2)
B = p(h,V,a) (3)

In the above representation a is a variable defining the operating
condition of the engine and can be termed, for instance, control parame-
ter or power setting. Its function is analogous to the one of the accel-
erator pedal in a typical automobile., In view of the great variety of
existing types of engines, it 1s not convenient to specify the actual
physical meaning of o to the effect of developing a general theory.

As an example, however, the o variable can be the number of revolutions
of the compressor-turbine group of a turbojet engine having constant
geometry; or the position of the fuel control lever; or the pressure in
the combustion chamber of a rocket engine having fixed geometry. Gener-
ally speaking, the control parameter a cannot assume any arbitrary
value, but only those values for which the thrust is bounded between an
upper limit and a lower limit. Assuming that the latter is ideally zero,
the following inequality is to be added to equations (2) and (3) in order
to completely define the behavior of the engine

0 € T(h,V,a) < Tyax(h,V) (4)

Constraining Equations

After assuming the thrust tangent to the flight path, the following
set of equations is considered®:

J1 =X - V(Ky + Ky cos 8) =0 (5)
Jo=h -Vsin® =0 (6)
J3 =KzV + Kyg sin 0 + D(h,V,L) I; T, V,e) o (7)
J), = K5é + %(K6 + Ko cos 8) - é% =0 (8)
J5 =m + Kgp(h,V,a) =0 (9)

°The constant coefficients K;i, Ko . . . Kg are introduced to

facilitate the derivation of simplified solutions, under particular
hypotheses. The exact equations of motion are associated with the fol-
lowing set of values: K; =Kg =0, K, = K5 =Ky = K5 = K7 =Kg = 1.
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The inequality (4) can be translated into the setting of the varia-
tional problem, by introducing two new real variables & and 7 satis-
fying the further constraints

Jo =T(h,V,a) - £2 =0 (10)

(h,V) - T(n,V,a) - 1% =0 (11)

J7 = Tmax
- Clearly, the effect of the constraints (10) and (11) is to reconduce

the analytical treatment of a variational problem involving inegqualities
to the same mathematical model useful in solving problems involving
equalities.

Additional Constraint
The set of seven eguations (5) to (11) involves one independent

variable, namely the time t. There are nine dependent variables X,
h, v, 6, m, L, «, &, and 7. For the case where the thrust 1is

tangent to the flight path, therefore, the problem of the optimum trajec-

tory embodies 2 degrees of freedom.

Problems of a more limited nature (involving 1 degree of freedom)
can also be of engineering interest. These problems arise in those cases
where an additional constraint of the form

Jg = o(X,h,V,6,m,L,a,t) =0 (12)

is considered. As an example, a rectilinear path is represented by
® =6 - Const.; a nonlifting path by ¢ =L; a path flown with constant
value of the engine control parameter by ¢ =a - Const., etc.

PROBLEM OF BOLZA

The functional form

f te
J = [G(x,h,v,e,m,t)]i +f H(X,h,V,0,m,L,a,t)dt (13)
; .

where the terms G and H denote arbitrarily specified functions of
the coordinates of the vehicle, is now considered and the problem of
Bolza formulated. The latter consists of finding, in the class

O+ H X
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of arcs X(t), h(t), V(t); 6(t), m(t), L(t), alt), ¢&(t), and
n(t) satisfying equations (5) to (12) and certain prescribed end condi-
tions, that special arc such that the functional form (13) is minimized.

To solve the above problem, a set of variable Lagrange multipliers
%l(t) . %8(t) is introduced and the following expression, termed

fundamental function, formed

8
F=H+ z Ik (14)
K=1

where Jy . . . Jg denote, respectively, the first members of equa-

tions (5) to (12). Since the unknown functions are nine in number, nine
Euler equations must be written, as follows

o\ L
dt(azJ> - (3 =1 9)  (15)

where zy =X, 2, =h, zz =V, 2z, =8, zg =m, 2¢ =1L, 27 =aqa,
zg = &, and 2g = 1. The explicit form of the Euler eqguations is now

indicated
: od OH

- o% of 16
MM FTR (16)

. A oT
Ao =__5(§.9 _£> + NsKg §B+ Ag oT 7\7<ﬂx— -@>+ 7‘8@”" o) (17)

m \dh  oh 63n " 3h  oh S3h  oh
Kz A -?\(K + K cose)—7\ sin 6 + 5@-93 +ﬁl4-
503 7 TAIL T B2 2 v W) 2n
A8 AT
8 B T max  OT
2 (K6 + K7 cos 8) + K5K8 + K6 BV + %7<_SV__ - §V> +
o¢ . OH
K5iu = ?\lVK2 sin 6 - AQV cos 6 + %BKug cos 8 - A, % K7 sin 8 + %8 d¢
JH
(19)

o8
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A

. '3 L 00 , oH

A5 = £§(T -D) + N\ > + A8 ~ + - (20)
A A

_ N3 3D Ay 9 . OH

0 = <L =__= _— = 21

moL mw i ta (21)
3 oT o) QT 0d OH
0 = 2Nt (23)

The following general remarks are of interest: (1) If the H function is
identically zero, the Bolza problem reduces to the Mayer problem. If,
on the other hand, the G function is identically zero, then the Bolza
problem reduces to the Lagrange problem (ref. 26); (2) if the ® function
is not identically zero, the variational problem admits one degree of
freedom; if, on the other hand, the ¢ function is identically zero, then
the number of degrees of freedom 1s increased to 2; (5) an important
mathematical consequence of the set of equations (16) to (24) is that

d . B . . . BQ aH _
L (X + Agh + Kahg¥ + Kghyb + Mg - H) + Ag S0 (@)

(4) generally speaking, the set of Euler equations (16) to (24) and of
constraining equations (5) to (12) must be dealt with by approximate
integration procedures. The main difficulty stems from the circumstance
that the variational problems of the mechanics of flight are boundary-
value problems, that is, problems with conditions prescribed in part at
the initial point and in part at the final point. Thus, the use of
trial-and-error techniques 1is, in the general case, an unavoidable neces-
sity. At any rate, the present set of equations appears to be much more
suitable for digital computing calculations than the set indicated by
Behrbohm (ref. 19) or Carstoiu (ref. 27).

Discontinuity of Eulerian Solution
As the Euler equations (23) and (24) show, the extremal arc is dis-
continuous with regard to the behavior of the engine. In fact, it gen-

erally embodies subarcs of three different kinds:

£ =0, \y=0 = T =0 (26)

(ool ol i
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n=0, Ag=0 — T=T (27)
A =0, Ap =0 (28)

The subarcs of equation (26) are flown by coasting; those of equa-
tion (27) are flown with maximum engine output; and those of equation (28)
are generally flown with a continuously variable thrust. The above rule,
however, admits several exceptions. An important one is represented by
the case where, because of the analytical configuration of the constraint
¢ = 0, the behavior of the engine in flight is prescribed at the onset
(for instance, constant value of the control parameter a). In such a
case, the aforementioned discontinuity disappears.

When discontinuities are present, the special conditions due to
Erdmann and Weierstrass must be satisfied at all corners of the extremal
solution. From the theory of reference 26, one may state the above con-
ditions as follows

(M) = () (29)
(h). = (), (30)
(k25) _ = (k3hs), (31)
(Ksh)_ = (Kshy), (32)
05). - o) o
(xli + Agh + Kgha¥ + Kl b + Mgt - H)_
- (xli + Ngh + Kahs¥ + Kohy8 + Agh - H>+ (34)

where the subscript ( )_ denotes a condition immediately before a
corner and the subscript ( )+ a condition immediately after a corner.

Transversality Condition

The boundary conditions of possible variational problems are in
part of the fixed end-points type and in part of the natural type. The
latter must be deduced from the following general transversality condi-
tion (ref. 26)
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[§G + NBX + ABh + KzhsBV + KABO + Abm +

. . . . . f
- - - vV - - =
(B - M - 2oh - KzhsV - Kghy6 A5m)s§]i 0 (35)

The above relation is to be identically satisfied for all systems of
variations &(. . .) consistent with the prescribed end conditions.

First Integral
If the two functions H and ¢ are such that
2 _ oy M _ g (36)
equation (25) admits the first integral:
MX + Aoh + KAV + KNy + Agm - H = C (37)
The continuity condition (34) is therefore rewritten as
(c)_ = (c), (38)
Furthermore, the transversality condition (55) becomes

[66 + ABX + AgBh + KahsbV + K5h,86 + Aghm _csf]i =0 (39)

ROCKET TRAJECTORIES FLOWN WITH NEGLIGIBLE INDUCED DRAG

A rocket-powered vehicle is now considered. The control parameter
a 1s chosen identical with the engine mass flow B. Thus, the engine
is represented by

B =a (%0)
T = aVg (41)
O<TZLT (42)
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where the equivalent exit velocity V., and the maximum thrust T
are regarded as constant, independent of altitude and velocity.

max

For K; =Kg =0, Ky = K3 =Ky = K5 = K7 = Kg =1 equations (5)
to (9) are rewritten as follows

X -Vecosd =0 (43)

h -Vsing =0 (44)

V+ g sin 6 + E_%éfzi =0 (45)

§+858 L _p (46)
A mV

m+a=0 (47)

If the induced drag is neglected, the total drag D becomes identical
with the zero-lift drag Dg. Since Dy depends on altitude and velocity

only, one has to write that D = D(h,V). This circumstance leads to the
following consequences:

(A) The equation of motion on the tangent to the flight path no
longer interacts with the equation of motion on the normal to the flight
path. The latter, therefore, can be employed a posteriori (once the
variational problem has been solved) to predict the amount of 1lift neces-
sary to maintain the aircraft on the computed optimum path.

(B) The Euler equation associated with the lift distribution is
considerably simplified, insofar as a drag function D(h,V) implies

that §2 = 0.
oL

Mayer Problem for Constant Mass Flow

If the engine is operated at a constant mass flow (larger than O,
but less than Tmax/Ve) the additional constraint (12) is written as:

® = a - Constant = O (48)

Clearly, the two Euler equations (23) and (24) are solved by Mg = A = 0.

For a problem of Mayer type H = 0 the Euler equation (21) 1leads to
%u = 0. The remaining Euler equations are written as follows:
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AN =0 (L9)
. A
)\2=?5% (50)
Ax = -\q cos 8 - A, sin 9 + zi 9D (51)
% 1 2 n oy
0 = NV sin 8 - AV cos 6 + Azg cos © (52)
A =§[Va-1>] (53)
PRRNIR AR
N3
0 = - =2 Ve + N5 + Ag (54)

Notice that equations (49) to (54) split into 2 noninteracting sets.
This is due to the fact that the multipliers A5 and Ag are present

only in equations (53) and (54). The first integral (37) becomes

aVe -D
7\1V cos 6 + }\EV sin 6 + )\5 —TH_

- g sin 6) - N = C (55)
In turn, the transversality condition (39) yields
f
@G»+ ABX + AgBh + AgBV + Agbm - csp]i =0 (56)

thus indicating that it is not possible, in the rresent idealized problem,
to prescribe the end values for the path inclination 0.

Problems not involving horizontal distance.- If the G function has
the form G = G(h,V,m,t) and if no condition is imposed on the X coordi-~
nate at one.of the two end points, the transversality condition (56) and
the Euler equation (49) yield

A =0 (57)
everywhere. As a consequence, equation (52) simplifies into (ref. 16)

(%EV - %Bg)cos 8 =0 (58)

®H =
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The solution arc is, therefore, discontinuous, being generally composed
of vertical subarcs (dive or zoom)
cos 6§ =0 (59)
and variable-path inclination subarcs, along which
AV - hgg =0 (60)
After computing the time derivative of equation (60)
AV + AV = Azg = O (61)

one may regard equations (50), (51), (60), and (61) as linear and homo-
geneous (for AL = 0) in the multipliers and their derivatives. Non-

trivial solutions exist for A, Az, Ao, Az if

o -1 1 0
m oh
sin 0 -%B—D 0 1
oV =0 (62)
v -g 0 0
v 0 A\ -g
that is, if
o -D-ydDLYD_ g (63)
€ v g oh

Assume now that the zero-lift drag has the form

D=2 Cpo (M) pSM2 (61)

Consider, for simplicity, the portion of the flight path which is embedded
in the isothermal stratosphere (a = Constant). Define the nondimensional

quantities

=L (65)
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= 2 (66)
YP,S

where p, denotes static pressure at the altitude hy of the tropopause.

From equations (63) to (66) one obtains (ref. 22)

T

T d 1 C (67)
CDOMQ[B + 7M2 + __ig___.@]

d log M

If the relationship between zero-lift drag coefficient and Mach number
is approximated as

Cpo = ny'2 (68)

(y and x being appropriate constants) equation (67) modifies into

T = il (69)
(1 + x + 7M2)

Notice that the results expressed by equations (63), (67), and (69)
are valid for all Mayer problems of the form G = G(h,V,m,t). In partic-
ular, they hold for the following cases: (1) Brachistocronic climbing
technique G = t; (2) climbing technique of maximum velocity increase
G = -V; (3) climbing technigue of maximum altitude increase G = -h.

Notice also that, for a constant engine mass flow, the flight time
is proportional to the propellant consumption. As a consequence the
brachistocronic climbing maneuver is identical with the climbing maneuver
which minimizes the propellant consumption.

APPROXIMATE COMPUTATION OF FLIGHT PATHS OF TURBOJET-POWERED

ATRCRAFT BY NEGLECTING CENTRIPETAL ACCELERATIONS

An interesting approach to the optimum climbing trajectory of a
turbojet-powered aircraft can be developed by means of the following
simplifications: (1) Centripetal accelerations are neglected; (2) changes
in aircraft weight due to fuel consumption are neglected; (3) weight com-
ponent on the normal to the flight path is assumed identical with mg.

oHH X
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The above hypotheses are reflected in the following choice for the
set of constants appearing in equations (5) to (9):

0 (70)

Ky = K5 = K7 = Kg

K, =K

5 Kg = 1 (71)

I
)

3 =K

The constraining relationships are, therefore, rewritten as follows:

X -Vecos 8=0 (72)

h-Vsing =0 (73)

V+gsinb4 2 = T_o (74)
1 L\ _

v(g ‘E)‘O (75)

m=0 (76)

With regard to the mode of operation of the engine, it is assumed that
a conveniently selected control parameter o is constant during flight

¢ = a - Constant = O (17

} In view of equation (77), the two Euler equations (23) and (24)
are solved by X6 = A7 = 0. The remaining Euler equations split into

two noninteracting sets, the essential one being supplied by equa-
tions (16) to (19), rewritten here as follows:

.
)\l - aX (78)
- ?\

5({oD  oT OH
A~ = == - = =

A
\z = . 3(oD  OT OH
A3 = =Ny cos 6 - A, sin 6 + ;r(gv SV> + ¥ (80)
O = AV sin 6 = AV cos 6 + Azg cos 6 + oH (81)
-1 2 38 36

Assuming that H 1is independent of t, the first integral (57) yields
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AV cos 6 + X2V sin 6 + AB(T -D

—gsin@)-H:C (82)
Furthermore, the transversality condition (39) leads to

[5(} + A BX + AgBh + AgdV - cs*c]f =0 (83)
i

Mayer Problems Not Involving Horizontal Distance

If H =0, if the G function has the form G = G(h,v,t), and if no
condition is imposed on the X variable at one of the two end points, the
transversality condition (83) and the Euler equation (78) yield

A =0 (84)

everywhere. As a consequence, the Euler equation (81) reduces to equa-
tion (58), thus indicating that a discontinuous solution occurs. The
extremal arc is composed of subarcs obeying equation (59) and subarcs
obeying equation (60), along which

1{oT oD
0 ;(gﬁ'gﬁ) 1 0
sin }.<5_T-§’_12> 0 1
m\oV oV
=0 (85)
Vv -g 0 0
v 0 v -g
The development of equation (85) leads to
Of(r -p)yv] - ¥ (1t - D) = 0 86
Zfr - o] - L o1 - ) (86)

a relation which holds for all problems of the form G = G(h,V,t),
regardless of the end conditions. In particular, it holds for the
brachistocronic climbing program, for which G = t.

Turbojet engine operating in isothermal stratosphere.- It is now
assumed that a turbojet-powered aircraft is flying in the isothermal

oH - =
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stratosphere3 and that the engine 1s operated in such a way that

T = 1T%(M,a) (87)
where Ty denotes thrust at the tropopause and =x = gl. For a parabolic
*
drag polar the drag coefficient Cp 1is supplied by
Cp = Cpo(M) + K(M)Ci? (88)

where K 1is the so-called induced drag factor. As a consequence, the
total drag becomes

>
D = Z cpepste? + 2D (89)
7D8S

From equations (86), (87), and (89) considerable manipulations yield the
following explicit solution (ref. 23) for the optimum pressure-altitude
relationship.

T = (90)
Where
- XX 2 d log K
Ay v (l + M —i_d Tos M) (91)
= 3+ M° 4 ———— 2
A2 A ( d log M
Ay = Ei<l + N Hﬂ’—‘) (93)
mg d0 log M
. (o)
7P,8S

3The speed of sound is, therefore, a = Constant everywhere.
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Lagrange Problems Not Involving Time and
Not Involving Horizontal Distance
Assume now that G @0, H = H(h,V,a) and that both time and hori-

zontal distance are free of choice. The transversality condition (83)
and the Euler equation (78) yield

N =05 C=0 (95)

while the first integral (82) reduces to

?\EVsin6+?\5(TI;D-gsin6>-H=O (96)

In turn, equation (8l) leads once more to a discontinuous solution, that
is, to a solution composed of subarcs cos 8 =0 (dive or zoom) and
variable path inclination subarcs

AV - Azg = 0 (97)

Along the latter, the Lagrange multiplier Ao, takes the form

}_A

Ao = = (98)

e

where

_ (T - D)V

Tg (99)

¥

From equations (79), (98), and (99), the multiplier A, can be elimi-
nated leading to:

= _-_-1=0 (100)
Regardless of the end conditions, the above result holds in all the cases
where the functional form to be minimized is of the type
te

J Ej;i H(h,V,a)dt (101)

A~ L s
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It holds, in particular, for:

(1) H =8 (climbing maneuver of minimum fuel consumption);

(2) H =1 (climbing maneuver of minimum time);

(3) H =V (climbing maneuver of minimum increase in curvilinear
abscissa associated with the flight path; this maneuver can be regarded
as almost identical with the so-called steepest climb, if the inclination
@ is, on the average, small).

Turbojet engine operating in isothermal stratosphere.- The problem
of minimum fuel consumption is now considered. It consists of minimizing
the functional form (101), where

HEB:-Cg—T (102)

In the above expression ¢ 1is the specific fuel consumption, the weight
of fuel consumed per unit time and unit thrust. In connection with an
isothermal stratosphere, a thrust function of the form_(87) and a specific
fuel consumption function of the form

¢ = c, (M,a) (103)
are assumed. JFor a parabolic drag polar obeying equation (89), the funda-

mental equation (lOO) can be explicitly solved in terms of the pressure
ratio, yielding (ref. 23)

T = B (10L)
B2 had B5
where
T
AK o l°g<c* *>
By = S+ oMy — 2L (105)
2
M 0 log M
CDo
CDoM2 o log(c )
B, 3+ L (106)
A d log M

By = E(l _ 0108 cx c*> (107)
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QUAST-STEADY MAYER PROBLEMS FOR CONSTANT ALTTITUDE

A quasi-steady problem is defined as any problem in which the
inertia terms appearing in the equations of motion are neglected.

It is to be noted that, while a nonsteady point of view is gener-
ally indispensable for a correct analysis of the flight paths of rocket-
powered vehicles, the quasi-steady approach is still useful in a number
of particular cases, such as the study of range and endurance of a
turbojet-powered aircraft. In this connection, the following concept

is to be stressed: the calculus of variations leadsh (for XKz—>O0,
K5-—9O) to results which are identical with those offered by the ordi-

nary theory of maxima and minima in the study of the so-called point
performances of an aircraft (ref. 24). 1In this sense, the quasi-steady
problems of the Mayer type must be regarded as an analytical attempt to
bridge the gap between the more sophisticated variational methods and
the less sophisticated techniques of the ordinary theory of maxima and
minima.

If the flight path develops at constant altitude, the additional
constraint (12) is represented by

=6 =0 (108)

As a consequence, for Kp = K3 = K5 =Kg =0, Ky =Ky = K7 =Kg =1
the equations of motion are rewritten as follows:

X -V=0 (109)

h=0 (110)

%(D -T) =0 (111)
L\ _

%<g - 5) -0 (112)

m+ B =0 (113)

With regard to the Euler equations, the solution T = O 1is excluded,
because it is not consistent with equation (111). The two remaining

possibilities are, therefore, either the solution T = T ,, or

the variable-thrust solution Ag = k7 = 0. For a Mayer problem

uAnalytically, one has to set K3 = K5 = 0 in equations (7) and (8).

@ H
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H =0, the latter solution is determined by the following significant
set of Buler equations:

A =0 (114)
Nz f3p AT OB
0= A + 2[R 9T}, B 11
I m (av )" (115)
A = N (116)
> b m2V
ab N
0 =2y X7 (117)
0= - 32 o A o8 (118)
m 3o 2 oo )

which admits the first integral
MV - AsB =C (119)
The transversality condition (59) is rewritten as

{SG + ABK + hgpm - catJ? -0 (120)

1

Problems Where No Time Condition Is Imposed

If the G function has the form G = G(X,m) and if no time condi-
tion is imposed at one of the two end points, the transversality condi-
tion (120) leads to

C=0 (121)

As a consequence, equations (115), (118), and (119) can be regarded as
linear and homogeneous in Aq, K5, and %5. Nontrivial solutions exist

for the multipliers if

1 1({9T _ D _ 98
m\gy oV ov
1 OT GB _
0 = 2= - 22 =0 122
m oo A ( )
Vv 0] -3
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that is, if

d log T 1 _ 9 log QM + 0 log B|0 log T 9 log DY _ 0 (123)
d log a 0 log V O logald logV JdlogV

After observing that B = c¢T/g, equation (123) is also rewritten as

along_dlogc_alogD—]+élOgcalogT_BlogD -0 (124)
d log a dlogV O logV 0 log ald log V. 0O log V

leading to

0 log(cD) _ 1

12
0 log V (125)

for an ideal power plant such that dc/da T 0, JT/da # O. For a polar

obeying equation (89) the logarithmic derivative of the drag with respect

to the velocity takes the form

d log C
04 2208 “Do | g p 4 & 108K
0 log D _ d log M d log M

(126)
o log V 1+ R

If, following a transformation of coordinates from the V,h,a space into
the M,n,a space, the specific fuel consumption is conceived as
c = c(M,n,a), equations (125) and (126) yield

1. d log(cCpp)

R - d log M (127)
5 0 log(cK)

o0 log M

As a consequence, the optimum Mach number is supplied by

o) log(cCDo)

c 1+ —g————
y K 5 - o log(ckK)
3 log M

When the Mach number derivatives of ¢, Cpy, and K are ideally zero,
equations (127) and (128) reduce to

@+
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(129)

=
i
W |+

A K
M = \’—KB — (130)
T CDO
that is, to the well-known optimum conditions of the quasi-steady flight
theory (ref. 28). Notice that the above results hold for all problems
of the form G = G(X,m). In particular, they hold for the maximum range
problem G = =X.
Problems Where No Condition Is Imposed on
Horizontal Distance
If the G function has the form G = G(t,m) and if no condition is
imposed on the horizontal distance at one of the two end points, the
transversality condition (120) and the Euler equation (11k4) lead to

AN =0 (131)

everywhere. As a consequence, equations (115) and (118) can be regarded
as linear and homogeneous in %5 and %5. Nontrivial solutions exist

for the multipliers if

e _am\ 3
m\gvV  ov

=0 (132)

that is, if

(1%3)

0 log T o log B N d log B0 log D _ o0 log T -0
dlogadlogV Jdloga\dlogV d logV

After introducing the specific fuel consumption ¢
is rewritien as

3 log T(a log ¢, 9 log D) , O log c<a log D O log ‘I‘) _ o (134)

0 log a\0 log V. 0 log V d log a\d log V. O log V

Bg/T, equation (133)
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leading to

d log(cD) -0

1
S Tog v (135)

for an ideal power plant such that ac{aa % 0, OT/da # O. Assume now
that the drag polar obeys equation (89) and that the specific fuel con-
sumption is conceived as c¢ = c(M,ﬁ,a). Equation (135) consequently
supplies the optimum ratio of induced drag to zero-lift drag

, 9 toa(cCpo)
d log M
0 log(cK)

dlog M

2

R = (136)

In turn, the optimum Mach number is to be consistent with the equation

’ o log(ceCpo)
A Mg\lCDO O log M (137)
T K \ 0 log(cK)
o _ 2 SOB\CR)
0 log M

When the Mach number derivatives of ¢, Cp,, and K are ideally zero,

the above expressions simplify into

R =1 (128)

= A, K-
M - \];)4 - (139)

leading to the well-known results of the low-speed flight theory (ref. 29),

It should be noticed that the results of this section hold for all prob-
lems of the form G = G(t,m). As a consequence, they also hold for the
maximum endurance problem G = -t.

QUASI-STEADY MAYER PROBLEMS FOR CONSTANT CONTROL PARAMETER

In the present section Mayer problems H = O of the quasi-steady
type are investigated, under the assumption that the engine control
parameter a is kept constant during flight. Thus, the additional con-
straint (12) is specified as

o=
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® = a - Constant = 0O (140)

Furthermore, it is assumed that the slope of the trajectory is so gentle
that: (1) Kinematic relationship between horizontal distance, time, and
velocity is approximated as X - V = 0; (2) weight component on the tan-
gent to the flight path is neglected; (3) weight component on the normal
to the flight path is identical with ng.

The following set of values is consequently chosen for the numerical
constants appearing in equations (5) to (9)

1 (141)

1}

=~
=
I

_K6=K8

]

=
M
It
=
W
|

=K, =Kg = K7 =0 (142)

so that the constraining equations are rewritten as

X-v=0 (143)
h-Vsind =0 (1h44)
2D -1) =0 (145)
%( ] ILﬂ) 0 (146)

m+g=0 (147)

With regard to the Euler equations, the conditions Ny = %7 =0 lead
to the following system

A =0 (148)
0=)\_5.E\’.13-§.“3+x-5-@ (149)
m\oh ob/ 2 on
A
_ 3(ap _ OT op
0 = =A - = Ay — 150
LY av)+ > v (250)
0 = A, (151)
X5 =N, L (152)
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oD My
0 =Nhs — - — (153)
S3L v
M o1 d
O=-—1——+)\ —Q"F?\ 154
m oo ° 3 8 (154)
admitting the first integral
MV - Agp = C (155)
The transversality condition is indicated as
[8G + ALBX + Agpm - cet)® = 0 (156)
> i

Problems Where No Time Condition Is Imposed

If the G function has the form G = G(X,m) and if no time condi-
tion is imposed at cne of the two end points, the transversality condi-
tion (156) leads to:

C=0 (157)

As a consequence, equations (149), (150), and (155) can be regarded as
linear and homogeneous in Aq, XB, and %5. Nontrivial solutions exist

for the multipliers if

o l(dT @) 3

m\3h  ohn " on
- F) - o (159
v 0 -B
that is, if
(a log T _ 3 log D><L 3 log B> , 3 log B(é log T _ 3 log D> 0
dlogh Ologh d log V d log h\d log V. 0 log V

(159)

After introducing the specific fuel consumption c¢ = Bg/T and considering
the pressure ratio =n as a dependent variable in place of the altitude
h, equation (159) is rewritten as
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alogc(alogT_élogD +along_élogc_BlogD>+
0 log n\d log V. O logV 0 log n dlog V. 0logV

0 log D log c + 0 log T _ 1) =0 (160)
d log n\d log V. 9 logV

Turbojet engine operating in isothermal stratosphere.- An ideal
aircraft is now considered with thrust T obeying equation (87), specific
fuel consumption c¢ obeying equation (105), and drag D obeying equa-
tion (89). Reference is made to the isothermal region of the stratosphere
a = Const,, in which the logarithmic derivative of the drag with respect
to the pressure ratio is given by

alOgDzl—R (161)
dlogn 1+R

After simple manipulations, equation (160) yields the optimum ratio of
induced drag to zero-lift drag

- d log(CDQ/T*)
d log M

) log(Kc*eT*)
"7 dlogM

R = (162)

b

so that the optimum Mach number is to be consistent with the equation

6 - °Do |
p. S 2
* %) log( Ke, T*>
4 -

d log M

For the particular case where the Mach number derivatives of Cpgy, K,
cx, and T, are ideally zero, the above relations lead to

-1
R = 2 (164)

M=, | —%— (165)
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that is, to the well-known formulas of the low-speed flight theory

(ref. 28) It is to be emphasized that the results of the present sec-
tion hold for all problems of the form G = G(X,m) and, therefore, also
for the maximum range problem G = -X.

Problems Where No Condition Is Imposed on
the Horizontal Distance

If the G function has the form G = G(t m) and if no condition is
imposed on the horizontal distance at one of the two end points, the
transversality condition (156) and the Euler equation (148) lead to
)\l = 0 everywhere. The two Euler equations (lh9 and (150) yield the

following form for the optimizing condition:

o _or %
dh oh dh
=0 (166)
3 _ o p
oV oV av

that is,

(6 log D _ d log T)5 log B _ (6 log D 0 log T)é log B =0 (167)

0 logh O log h/d log V alogv d log V/d log h

After introducing the specific fuel consumption ¢ and the pressure
ratio =n, equation (167) is rewritten as

0 log cfo log T _ O log D\ _ o log T3 log ¢ + 9 log DY
0 log n\0 log V. 0o log V 0 log n\d log V. 0 logV

0 log Dfd logc, 0 log T\ _ g4 (168)
d log t\0 log V. 0 log V

Turbojet engine operating in isothermal stratosphere.- After con-
sidering equations (87), (89), and (103), equation (168) can be solved
in terms of the ratio of induced drag to zero-lift drag:

. o log (CDO/T*)

R = 0 log M (169)
o) log(KT*c*E)
o log M

OHF X
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The optimum Mach number must satisfy the equation
2m 2
Ke =T
) ]_og(_*_*_>
- Cpo
2T
*_ _ CD M2 0 log M (170)
7p,S © d 2
* . log(KT*c* )
0 log M
When the Mach number derivatives of Coo» K, T4, cy are zero, the
above expressions reduce to
R =1 (171)

(172)

implying that the optimum operating altitude is identical with the theo-
retical ceiling of the aircraft (ref. 24). DNotice that the present
results hold for all problems of the form G = G(t,m) and, therefore,
also for the maximum endurance problem G = -t.

CONCLUSIONS

A general theory is presented for analyzing minimal maneuvers of
high-performance aircraft in a vertical plane.

The Bolza problem consisting of the simultaneous optimization of
the angle-of-attack program and of the thrust program is considered.
With regard to the general case, the integration of the set of Euler
equations and constraining equations is to be performed by approximate
methods. In view of the fact that the variational problems of engineering
interest are boundary-value problems, the use of trial-and-error proce-
dures is in order.

Under particular assumptions, however, solutions in a closed form
can be derived for the optimizing condition. As an example, problems of
Mayer type or of lLagrange type are investigated by neglecting either the
induced drag or the centripetal acceleration. Particular attention is
devoted to the climbing technique of minimum time or of minimum fuel
consumption for turbojet-powered aircraft and rocket-powered aircraft.
An explicit relationship is obtained between altitude and Mach number,
which bypasses the use of the so-called energy-height method,
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Mayer problems of the quasi-steady type are also considered in con-
nection with flight paths of maximum range or maximum endurance for
turbojet-powered aircraft. The optimizing condition is evaluated for
arbitrary dependence between zero-lift drag coefficient, induced drag
factor, thrust, specific fuel consumption, and Mach number. An important
1ink is established between calculus of variations and ordinary theory
of maxima and minima; it is shown that, for the quasi-steady problem,
both approaches lead to the same results.

Purdue University,
Lafayette, Ind., July 25, 1958.
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